contradictions, which then blow up into a full-on time paradox and potential violations of physical laws.
The Science of Bending Time
Though our current scientific model of time is based upon Albert Einstein’s theory of relativity—a fact for which Hank Pym will always be profoundly jealous—the strange, ephemeral nature of time has been pondered for centuries. The philosopher and theologian Saint Augustine (354–430) mused, “What, then, is time? If no one asks me, I know what it is. If I wish to explain it to him who asks me, I do not know.” 3 Augustine resolved the conflict through an appeal to a supernatural creator, but that option is not, as a rule, available to scientists. Scientific attempts to quantify the ephemeral nature of time have tended to be tied to the regular activity of a physical system, which is the basis for any sort of timekeeping device, from an astronomical calendar to a water clock to the digital chronometer in Iron Man’s heads-up display.
Einstein, however, realized that this same regularity created an issue. Let’s say that you set up a simple clock that consists of a light that points straight up. It fires a tiny pulse of light that hits a mirror one meter above it, and is then reflected back down to a detector right next to where the laser was emitted. Each cycle is a “tick” and a certain number of ticks indicates a second, and so on. One of Einstein’s greatest insights was the realization that light moved at a constant speed, so this sort of ideal clock will be perfectly precise. 4 If you keep such a clock with you, you’ll always have a precise measurement of the time wherever you are.
Unfortunately, there is a problem, which becomes evident if you consider the clock in motion. And there’s no one better to choose when discussing motion than Pietro Maximoff, Quicksilver, although even he can’t move fast enough for our example without some help. So let’s assume that Quicksilver is traveling to the Shi’ar homeworld with his wife, Crystal. He sets sail on his fiftieth “birthday,” in March 2014 (based on the first appearance of Quicksilver and his twin sister, the Scarlet Witch, in March 1964’s X-Men #4).
Though the ship they’re using should have faster-than-light engines, the engines are broken, and so Pietro and Crystal are forced to travel at a speed that is very fast, but still a bit shy of the speed of light. They decide the trip isn’t worth the trouble and turn around, but they’re moving so slowly (in cosmic terms, that is) that the trip still takes a while. Quicksilver is impatient, so he pays close attention to his clock, measuring exactly 365 twenty-four-hour periods (days, if you will) between his departure and his return. He shows up on Wanda’s doorstep, ready to celebrate his fifty-first birthday!
Pietro’s sister Wanda has a clock of her own, though. (Perhaps the matching set was a gift from dear old Dad, Magneto—the master race of mutants must be punctual, after all.) If she were able to use her hex powers to keep an eye on Pietro’s clock while he was traveling, she would not see a stationary clock, but rather a clock in motion. In fact, while Pietro watches the light pulse travel only two meters (one meter up and one meter back down), Wanda sees the clock also travel almost two meters (remember, the ship’s speed is just shy of light speed) in the horizontal direction. From Wanda’s viewpoint, the pulse of light traces out two sides of an isosceles triangle with a height of one meter and a base distance just shy of two meters.
It doesn’t take Hank Pym or Tony Stark—just some basic geometry—to figure out that the path of light Wanda sees is going to be longer than the path that Pietro sees. Since the speed of light is constant, it takes longer for the clock to complete a tick for Wanda than it does for Pietro. In other words, time on the spaceship moves slower than it does back on Earth.
For the
Julia Quinn
Millie Gray
Christopher Hibbert
Linda Howard
Jerry Bergman
Estelle Ryan
Feminista Jones
David Topus
Louis L’Amour
Louise Rose-Innes