It provides an order for twenty-six letters—it provides relations such as
a
is next to
b, d
is six letters before
j, x
is three letters after
u,
and so on. But without the letters, the alphabet has no meaning—it has no "supra-letter," independent existence. Instead, the alphabet comes into being with the letters whose lexicographic relations it supplies. Leibniz claimed that the same is true for space: Space has no meaning beyond providing the natural language for discussing the relationship between one object's location and another. According to Leibniz, if all objects were removed from space—if space were completely empty—it would be as meaningless as an alphabet that's missing its letters.
Leibniz put forward a number of arguments in support of this so-called
relationist
position. For example, he argued that if space really exists as an entity, as a background substance, God would have had to choose where in this substance to place the universe. But how could God, whose decisions all have sound justification and are never random or haphazard, have possibly distinguished one location in the uniform void of empty space from another, as they are all alike? To the scientifically receptive ear, this argument sounds tinny. However, if we remove the theological element, as Leibniz himself did in other arguments he put forward, we are left with thorny issues: What is the location of the universe within space? If the universe were to move as a whole—leaving all relative positions of material objects intact—ten feet to the left or right, how would we know? What is the speed of the entire universe through the substance of space? If we are fundamentally unable to detect space, or changes within space, how can we claim it actually exists?
It is here that Newton stepped in with his bucket and dramatically changed the character of the debate. While Newton agreed that certain features of absolute space seem difficult or perhaps impossible to detect directly, he argued that the existence of absolute space does have consequences that are observable: accelerations, such as those at play in the rotating bucket, are accelerations with respect to absolute space. Thus, the concave shape of the water, according to Newton, is a consequence of the existence of absolute space. And Newton argued that once one has any solid evidence for something's existence, no matter how indirect, that ends the discussion. In one clever stroke, Newton shifted the debate about space from philosophical ponderings to scientifically verifiable data. The effect was palpable. In due course, Leibniz was forced to admit, "I grant there is a difference between absolute true motion of a body and a mere relative change of its situation with respect to another body." 8 This was not a capitulation to Newton's absolute space, but it was a strong blow to the firm relationist position.
During the next two hundred years, the arguments of Leibniz and others against assigning space an independent reality generated hardly an echo in the scientific community. 9 Instead, the pendulum had clearly swung to Newton's view of space; his laws of motion, founded on his concept of absolute space, took center stage. Certainly, the success of these laws in describing observations was the essential reason for their acceptance. It's striking to note, however, that Newton himself viewed all of his achievements in physics as merely forming the solid foundation to support what he considered his really important discovery: absolute space. For Newton, it was all about space. 10
Mach and the Meaning of Space
When I was growing up, I used to play a game with my father as we walked down the streets of Manhattan. One of us would look around, secretly fix on something that was happening—a bus rushing by, a pigeon landing on a windowsill, a man accidentally dropping a coin—and describe how it would look from an unusual perspective such as the wheel of the bus, the pigeon in flight, or
Robert Edwards
Kristen Flowers
India Lee
Anthea Bell
Gemma Malley
Irene Hannon
Steve Vernon
Kate Breslin
Martin Edwards
Rebecca Connolly