Moscow, I discussed black holes withtwo leading Soviet experts, Yakov Zeldovich and Alexander Starobinsky. Theyconvinced me that, according to the quantum mechanical uncertainty princi-ple, rotating black holes should create and emit particles. I believed their argu-ments on physical grounds, but I did not like the mathematical way in whichthey calculated the emission. I therefore set about devising a better mathemat-ical treatment, which I described at an informal seminar in Oxford at the endof November 1973. At that time I had not done the calculations to find outhow much would actually be emitted. I was expecting to discover just the radi-ation that Zeldovich and Starobinsky had predicted from rotating black holes.However, when I did the calculation, I found, to my surprise and annoyance,that even nonrotating black holes should apparently create and emit particlesat a steady rate.
At first I thought that this emission indicated that one of the approximationsI had used was not valid. I was afraid if Bekenstein found out about it, he woulduse it as a further argument to support his ideas about the entropy of blackholes, which I still did not like. However, the more I thought about it, themore it seemed that the approximations really ought to hold. But what finallyconvinced me that the emission was real was that the spectrum of the emittedparticles was exactly that which would be emitted by a hot body.
The black hole was emitting particles at exactly the correct rate to preventviolations of the second law.
Since then, the calculations have been repeated in a number of different formsby other people. They all confirm that a black hole ought to emit particles andradiation as if it were a hot body with a temperature that depends only on theblack hole’s mass: the higher the mass, the lower the temperature. One canunderstand this emission in the following way: What we think of as emptyspace cannot be completely empty because that would mean that all the fields,such as the gravitational field and the electromagnetic field, would have to beexactly zero. However, the value of a field and its rate of change with time arelike the position and velocity of a particle. The uncertainty principle impliesthat the more accurately one knows one of these quantities, the less accuratelyone can know the other.
So in empty space the field cannot be fixed at exactly zero, because then itwould have both a precise value, zero, and a precise rate of change, also zero.Instead, there must be a certain minimum amount of uncertainty, or quantumfluctuations, in the value of a field. One can think of these fluctuations as pairsof particles of light or gravity that appear together at some time, move apart,and then come together again and annihilate each other. These particles arecalled virtual particles. Unlike real particles, they cannot be observed directly
with a particle detector. However, their indirect effects, such as small changesin the energy of electron orbits and atoms, can be measured and agree with thetheoretical predictions to a remarkable degree of accuracy.
By conservation of energy, one of the partners in a virtual particle pair willhave positive energy and the other partner will have negative energy. The onewith negative energy is condemned to be a short-lived virtual particle. This isbecause real particles always have positive energy in normal situations. It musttherefore seek out its partner and annihilate it. However, the gravitationalfield inside a black hole is so strong that even a real particle can have negativeenergy there.
It is therefore possible, if a black hole is present, for the virtual particle withnegative energy to fall into the black hole and become a real particle. In thiscase it no longer has to annihilate its partner; its forsaken partner may fall intothe black hole as well. But because it has positive energy, it is also possible forit to escape to infinity as a real particle. To an observer at a distance, it
Logan Byrne
Thomas Brennan
Magdalen Nabb
P. S. Broaddus
James Patterson
Lisa Williams Kline
David Klass
Victor Appleton II
Shelby Smoak
Edith Pargeter