Illustrated Theory of Everything: The Origin and Fate of the Universe
of thebox. At some later time they could, by chance, all be in the right half or all beback in the left half. However, it is overwhelmingly more probable that therewill be roughly equal numbers in the two halves. Such a state is less ordered,or more disordered, than the original state in which all the molecules were inone half. One therefore says that the entropy of the gas has gone up.
Similarly, suppose one starts with two boxes, one containing oxygen moleculesand the other containing nitrogen molecules. If one joins the boxes togetherand removes the intervening wall, the oxygen and the nitrogen molecules willstart to mix. At a later time, the most probable state would be to have athoroughly uniform mixture of oxygen and nitrogen molecules throughout thetwo boxes. This state would be less ordered, and hence have more entropy,than the initial state of two separate boxes.
The second law of thermodynamics has a rather different status than that ofother laws of science. Other laws, such as Newton’s law of gravity, forexample, are absolute law-that is, they always hold. On the other hand, thesecond law is a statistical law-that is, it does not hold always, just in the vastmajority of cases. The probability of all the gas molecules in our box beingfound in one half of the box at a later time is many millions of millions to one,but it could happen.
However, if one has a black hole around, there seems to be a rather easier wayof violating the second law: Just throw some matter with a lot of entropy, suchas a box of gas, down the black hole. The total entropy of matter outside theblack hole would go down. One could, of course, still say that the total entropy,including the entropy inside the black hole, has not gone down. But sincethere is no way to look inside the black hole, we cannot see how much entropythe matter inside it has. It would be nice, therefore, if there was some featureof the black hole by which observers outside the black hole could tell itsentropy; this should increase whenever matter carrying entropy fell into theblack hole.
Following my discovery that the area of the event horizon increased whenevermatter fell into a black hole, a research student at Princeton named JacobBekenstein suggested that the area of the event horizon was a measure of theentropy of the black hole. As matter carrying entropy fell into the black hole,the area of the event horizon would go up, so that the sum of the entropy ofmatter outside black holes and the area of the horizons would never go down.This suggestion seemed to prevent the second law of thermodynamics frombeing violated in most situations. However, there was one fatal flaw: If a blackhole has entropy, then it ought also to have a temperature. But a body with anonzero temperature must emit radiation at a certain rate. It is a matter ofcommon experience that if one heats up a poker in the fire, it glows red hotand emits radiation. However, bodies at lower temperatures emit radiation,too; one just does not normally notice it because the amount is fairly small.This radiation is required in order to prevent violations of the second law. Soblack holes ought to emit radiation, but by their very definition, black holesare objects that are not supposed to emit anything. It therefore seemed that thearea of the event horizon of a black hole could not be regarded as its entropy.In fact, in 1972 I wrote a paper on this subject with Brandon Carter and anAmerican colleague, Jim Bardeen. We pointed out that, although there weremany similarities between entropy and the area of the event horizon, there wasthis apparently fatal difficulty. I must admit that in writing this paper I wasmotivated partly by irritation with Bekenstein, because I felt he had misusedmy discovery of the increase of the area of the event horizon. However, itturned out in the end that he was basically correct, though in a manner he hadcertainly not expected.
BLACK HOLE RADIATION
In September 1973, while I was visiting

Similar Books

Dead Rising

Debra Dunbar

Star of the Show

Sue Bentley

Snowed In with Her Ex

Andrea Laurence

Mrs. Robin's Sons

Kori Roberts

The Reckoning

Christie Ridgway

My Heart's Passion

Elizabeth Lapthorne