two main points. The first is that most mathematical thinking begins with vague visual images and is only later formalized with symbols. About ninety percent of mathematicians, he tells us, think that way. The other ten percent stick to symbols the entire time. The second is that ideas in mathematics seem to arise in three stages.
First, it is necessary to carry out quite a lot of conscious work on a problem, trying to understand it, exploring ways to approach it, working through examples in the hope of finding some useful general features. Typically, this stage bogs down in a state of hopeless confusion, as the real difficulty of the problem emerges.
At this point it helps to stop thinking about the problem and do something else: dig in the garden, write lecture notes, start work on another problem. This gives the subconscious mind a chance to mull over the original problem and try to sort out the confused mess that your conscious efforts have turned it into. If your subconscious is successful, even if all it manages is to get part way, it will “tap you on the shoulder” and alert you to itsconclusions. This is the big “aha!” moment, when the little lightbulb over your head suddenly switches on.
Finally, there is another conscious stage of writing everything down formally, checking the details, and organizing it so that you can publish it and other mathematicians can read it. The traditions of scientific publication (and of textbook writing) require that the “aha!” moment be concealed, and the discovery presented as a purely rational deduction from known premises.
Henri Poincaré, probably my favorite among the great mathematicians, was unusually aware of his own thought processes and lectured about them to psychologists. He called the first stage “preparation,” the second “incubation followed by illumination,” and the third “verification.” He laid particular emphasis on the role of the subconscious, and it is worth quoting one famous section of his essay Mathematical Creation :
For fifteen days I strove to prove that there could not be any functions like those I have since called Fuchsian functions. I was then very ignorant; every day I seated myself at my table, stayed an hour or two, tried a great number of combinations and reached no results.
One evening, contrary to my custom, I drank black coffee and could not sleep. Ideas rose in crowds; I felt them collide until pairs interlocked, so to speak, making a stable combination. By the next morning I had established the existence of a class of Fuchsian functions, those which come from the hypergeometric series; I had only to write out the results, which took but a few hours.
This was but one of several occasions on which Poincaré felt that he was “present at his own unconscious work.”
A recent experience of my own also fits Poincaré’s three-stage model, though I did not have the feeling that I was observing my own subconscious. A few years ago, I was working with my long-term collaborator Marty Golubitsky on the dynamics of networks. By “network” I mean a set of dynamical systems that are “coupled together,” with some influencing the behavior of others.The systems themselves are the nodes of the network— think of them as blobs—and two nodes are joined by an arrow if one of them (at the tail end) influences the other (at the head end). For example, each node might be a nerve cell in some organism, and the arrows might be connections along which signals pass from one cell to another.
Marty and I were particularly interested in two aspects of these networks: synchrony and phase relations. Two nodes are synchronous if the systems they represent do exactly the same thing at the same moment. That trotting dog synchronizes diagonally opposite legs: when the front left foot hits the ground, so does the back right. Phase relations are similar, but with a time lag. Thedog’s front right foot (which is similarly synchronized with its
Anita Rau Badami
Lisa Railsback
Susan Mallery
Jeanne M. Dams
Stephanie Bond
Julieann Dove
Newt Gingrich, William Forstchen
Ann Budd
Joss Wood
Eve Jameson