A short history of nearly everything
nucleosynthesis. In 1957, working with others, Hoyle showed how the heavier elements were formed in supernova explosions. For this work, W. A. Fowler, one of his collaborators, received a Nobel Prize. Hoyle, shamefully, did not.
    According to Hoyle’s theory, an exploding star would generate enough heat to create all the new elements and spray them into the cosmos where they would form gaseous clouds—the interstellar medium as it is known—that could eventually coalesce into new solar systems. With the new theories it became possible at last to construct plausible scenarios for how we got here. What we now think we know is this:
    About 4.6 billion years ago, a great swirl of gas and dust some 15 billion miles across accumulated in space where we are now and began to aggregate. Virtually all of it—99.9 percent of the mass of the solar system—went to make the Sun. Out of the floating material that was left over, two microscopic grains floated close enough together to be joined by electrostatic forces. This was the moment of conception for our planet. All over the inchoate solar system, the same was happening. Colliding dust grains formed larger and larger clumps. Eventually the clumps grew large enough to be called planetesimals. As these endlessly bumped and collided, they fractured or split or recombined in endless random permutations, but in every encounter there was a winner, and some of the winners grew big enough to dominate the orbit around which they traveled.
    It all happened remarkably quickly. To grow from a tiny cluster of grains to a baby planet some hundreds of miles across is thought to have taken only a few tens of thousands of years. In just 200 million years, possibly less, the Earth was essentially formed, though still molten and subject to constant bombardment from all the debris that remained floating about.
    At this point, about 4.5 billion years ago, an object the size of Mars crashed into Earth, blowing out enough material to form a companion sphere, the Moon. Within weeks, it is thought, the flung material had reassembled itself into a single clump, and within a year it had formed into the spherical rock that companions us yet. Most of the lunar material, it is thought, came from the Earth’s crust, not its core, which is why the Moon has so little iron while we have a lot. The theory, incidentally, is almost always presented as a recent one, but in fact it was first proposed in the 1940s by Reginald Daly of Harvard. The only recent thing about it is people paying any attention to it.
    When Earth was only about a third of its eventual size, it was probably already beginning to form an atmosphere, mostly of carbon dioxide, nitrogen, methane, and sulfur. Hardly the sort of stuff that we would associate with life, and yet from this noxious stew life formed. Carbon dioxide is a powerful greenhouse gas. This was a good thing because the Sun was significantly dimmer back then. Had we not had the benefit of a greenhouse effect, the Earth might well have frozen over permanently, and life might never have gotten a toehold. But somehow life did.
    For the next 500 million years the young Earth continued to be pelted relentlessly by comets, meteorites, and other galactic debris, which brought water to fill the oceans and the components necessary for the successful formation of life. It was a singularly hostile environment and yet somehow life got going. Some tiny bag of chemicals twitched and became animate. We were on our way.
    Four billion years later people began to wonder how it had all happened. And it is there that our story next takes us.

A Short History of Nearly Everything

PART IITHE SIZE OF THE EARTH
    Nature and Nature’s laws lay hid in
    night;
    God said, Let Newton be! And all
    was light.
    -Alexander Pope
     

A Short History of Nearly Everything

CHAPTER 4: THE MEASURE OF THINGS
    IF YOU HAD to select the least convivial scientific field trip of all time, you could certainly do worse than the French

Similar Books

Ten Times Guilty

Brenda Hill

From a Safe Distance

Julia Bishop

Beauty's Beast

Tara Brown

A Child of Jarrow

Janet MacLeod Trotter

Homecoming

Denise Grover Swank